Setup of Accredited Laboratory for Drinking Water Quality Analysis

Dr. Rakesh Kumar

NABL Lead Assessor and retired from Indian Institute of Toxicology Research Lucknow-226001

Email: rkchitranshi@rediffmail.com

Definitions

- Assessment -- The process of measuring something with the purpose of assigning a numerical value.
- Scoring -- The procedure of assigning a numerical value to assessment task.
- Evaluation -- The process of determining the worth of something in relation to established benchmarks using assessment information.

The liberalization of economies and the globalization of markets have intensified international competition. This has brought particular challenges to companies in developing countries.

Developing countries need to have a credible conformity assessment infra structure to certify that their products conform to international standards.

Testing laboratories are an essential component of this infra structure.

Testing Labs in developing countries face major problems in

In measurementProduct certificates.

WTO recognized this as a Technical Barrier to trade and established the TBT Agreement.

The test result can only be mutually acceptable if there is a mechanism where by the user has confidence in the technical competence of laboratories and soundness of their measurements.

Global Conformity Assessment System for testing i.e. ISO/IEC-17025 :

Guide Book as a tool in assisting developing countries to achieve international accreditation of their testing laboratories and consequent acceptance of their products in other countries, thus enabling them to over come a major technical barrier to trade and to fully exploit their competitive strength in the global market.

Role of Accredited Test Laboratories in Testing & Calibration Programmes

Accreditation

Definition: Procedure by which an authoritative body gives formal recognition that a body or person is competent to carry out specific tasks - ISO/IEC Guide 2 : 1996.

Key points:

- Checks conformity to all clauses of ISO/IEC 17025 (which include all ISO 9001 elements).
- Assures the client that the procedures and test results are technically valid.
- Recognizes the technical competence of laboratory staff.
- Endorses the quality management system.

Some Benefits of Laboratory Accreditation

- Provides formal recognition to competent laboratories and ensures that they perform their work in accordance with international criteria.
- Minimises the risk of unreliable results which, in turn, reduces the risk for manufacturers or suppliers to produce or supply a faulty product.
- Minimises the chances of retesting and hence reduces chances of additional financial burden and time delays.

Some Benefits of Laboratory Accreditation

- ⇒ Enhances Customer confidence and Satisfaction.
- International acceptability of test results. Based on mutual evaluation and acceptance of other country's laboratory accreditation systems, international agreements called Mutual Recognition Arrangements (MRA) have been established for realizing the ideal of having products "tested once and accepted everywhere". Such agreements are crucial in enabling test data by an accredited laboratory to be accepted in overseas markets and facilitate trade.

Competence

Raise standard to meet international standards

Operation

- ISO/IEC 17025 testing and cal labs
- ISO 15189 medical testing labs
- ISO/IEC 17043 proficiency testing providers
- ISO Guide 34 reference material producers
- ISO/IEC 17020 inspection bodies
- ISO/IEC 17021 management system CBs
- ISO/IEC Guide 65 Product CBs

About NABL

- NABL provides laboratory accreditation services to laboratories that are performing tests and calibrations in accordance with ISO/ IEC 17025: 1999 (General requirements for the competence of Testing and Calibration Laboratories).
- NABL has established its accreditation system in accordance with ISO IEC Guide 58, which is followed internationally.

Calibration and testing laboratory accreditation systems -- General requirements for operation and recognition

NABL is signatory to APLAC Mutual Recognition Arrangement & ILAC Mutual Recognition Arrangement since October 2000 & November 2000 respectively.

The International Picture

ILAC

EA	European co-operation for Accreditation
APLAC	Asia Pacific Laboratory Accreditation Cooperation
ILAC	International Laboratory Accreditation Cooperation
SADCA	Southern African Development Cooperation for Accreditation
IAAC	Inter-American Accreditation Cooperation
Unaffiliated Bodies – Peer evaluated ABs who are not geographically located in	
one of the established regions	

Contents of ISO / IEC 17025 : 2017

- 1. Scope
- 2. Normative References
- 3. Terms and Definitions
- 4. General Requirements
- 5. Structural Requirements
- 6. Resources Requirements
- 7. Process Requirements
- 8. Management System Requirements

Management System Requirement

Management System Documentation (Option A)

System acknowledged and implemented all levels

Level 1 Quality Manual
Level 2 Quality Assurance
Procedures
Level 3 Standard Operating
Procedures for Tests,
Equipment's and Calibration
Level 4 Forms & Formats,
Records

Control of Records

Establish and retain legible records to demonstrate fulfilment of the requirements in this document (NEW)

Technical records .

1.PERSONNEL

- ➤Sufficient in number
- ➤Qualified
- ➤Trained
- ≻Competent

2. ACCMOODATION and FACILITIES

Suitable for different activities

➤Well Separated rooms for Equipment, Wet Lab,

Hot Zone and Storage room

- Maintenance of Environmental conditions(temperature and Humidity).
- Entry is restricted
- Use PPE in Laboratory
- Good Housekeeping

3. EQUIPMENT

Includes all apparatus, equipment ,software, reagents, glassware, chemicals and Reference standards
 All Equipment must be calibrated and calibration status must be maintained by doing intermediate checks.

All Equipment must have UID and log books
 All equipment must have maintenance plan.
 Equipment are operated by authorized personnel only.

Unique identification of each equipment.

Log Books of Equipment

4.Metrological Traceability These requirements have been made clearer, with simplified text.

1:The laboratory must maintain metrological traceability of its measurement results by a documented unbroken chain of calibrations, each contributing to the measurement uncertainty, linking them to an appropriate reference.

SI-UNITS
International
standards
National
standards
Reference
standards
Working
standards
Process
Instruments

2:Measurement results are to be traceable to SI units through either:

- a) calibration by a competent laboratory;
- b) certified values of certified reference materials
 from a competent producer with stated traceability
 to SI units;
- c) direct realisation of the SI units.
- Clarity provided that traceability to SI may be achieved through the use of certified reference materials.

5.SELECTION OF METHOD

Appropriate methods

Method up to date, readily available to personnel

Standard Operating Procedure (SOP) >A unique identification number of SOP

- \succ Its title.
- Its application and limitations.
- the adaptation and amendment date and amendment number.
- > A brief description of its principle.
- Reference to the standard on which the procedure is based, if applicable.
- > The name of equipment and chemical and reagents required.
- >An unambiguous step-by-step test instruction to be followed by technical staff. > The precision of the method whenever applicable.

 \triangleright Detail instructions for handling, transportation and storage and preparation of items (eg Standards), estimation of uncertainty and precaution to be taken. Procedure for record of data produced.

Verify method before use

Method Verification

- importing a validated method
- show that laboratory can do it at its site
- demonstrate that laboratory can repeat the method performance

Aspect of a Verification

Be extensive enough to show that the method is fit for the intended use and meets the customer's needs

Method Verification

Standard methods shall be verified for:

1. the equipment

SpectrAA

3. the environmental conditions

- 4. testing staff member competence to perform the test
- 5. capability to achieve the method performance

Validation for car driving

Car driving Training

Verification of Car driving

Car driving

Method Verification

- To demonstrate you can repeat the method performance, including:
- Detection limits
- Precision
- Bias True Value Bias Total Analytic Error TE or TAE = Bias + 2SD2SD RE

Method Verification – Bias

- To demonstrate the absence of lab bias
- Proficiency tests/interlaboratory comparisons
- Analysis of CRMs

Bias

 Trueness is the "closeness of agreement between the average of an infinite number of replicate measured quantity values and a reference quantity value". It is quantitatively expressed as bias.

Water Who am I? I am tasteless, I am Colourless, I am shapeless, I am Odourless, But without me, there's no life.

Can you tell me who m I? Yes! I 'm Water

Introduction to Water

Water is the most common substance found on the Earth.
 About 3/4th of the Earth is covered with water.
 Water can be found in ponds, rivers, lakes, oceans and seas.

Three Forms of Water

When water is heated, it into **steam** changes or **water** water vapour. This water vapour is a gas, which can be changed into by cooling. When kept in the 'freezer' of a refrigerator, water will change into solid **ice**. If you keep the ice in a warm place, it will change into water.

Properties of Water Polar molecule Cohesion and adhesion High specific heat Density – greatest at 4°C Universal solvent of life

Polarity of Water

- In a water molecule two hydrogen atoms form single polar covalent bonds with an oxygen atom. Gives water more structure than other liquids
 - Because oxygen is more electronegative, the region around oxygen has a partial negative charge.
 - The region near the two hydrogen atoms has a partial positive charge.
- A water molecule is a polar molecule with opposite ends of the molecule with opposite charges.

- Water has a variety of unusual properties because of attractions between these polar molecules.
 - The slightly negative regions of one molecule are attracted to the slightly positive regions of nearby molecules, forming a hydrogen bond.
 - Each water molecule can form hydrogen bonds with up to four neighbors.

Fig. 3.1

HYDROGEN BONDS

- Hold water molecules
 together
- Each water molecule can form a maximum of 4 hydrogen bonds
- The hydrogen bonds joining water molecules are weak, about 1/20th as strong as covalent bonds.
- They form, break, and reform with great frequency

- Extraordinary Properties that are a result of hydrogen bonds.
 - Cohesive behavior
 - Resists changes in temperature
 - High heat of vaporization
 - Expands when it freezes
 - Versatile solvent

Organisms Depend on Cohesion

Hydrogen bonds hold the substance together, a phenomenon called cohesion

- Cohesion is responsible for the transport of the water column in plants
- Cohesion among water molecules plays a key role in the transport of water against gravity in plants
- Adhesion, clinging of one substance to another, contributes too, as water adheres to the wall of the vessels.

- Surface tension, a measure of the force necessary to stretch or break the surface of a liquid, is related to cohesion.
 - Water has a greater surface tension than most other liquids because hydrogen bonds among surface water molecules resist stretching or breaking the surface.
 - Water behaves as if covered by an invisible film.
 - Some animals can stand, walk, or run on water without breaking the

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Moderates Temperatures on Earth

Water stabilizes air temperatures by absorbing heat from warmer air and releasing heat to cooler air.

Water can absorb or release relatively large amounts of heat with only a slight change in its own temperature.

Celsius Scale at Sea Level		
100°C	Water boils	
37°C	Human body temperature	
23°C	Room temperature	
0°C	Water freezes	

- What is kinetic energy?
- Heat?
- Temperature?
- Calorie?
- What is the difference in cal and Cal?
- What is specific heat?

Density of Water

- Most dense at 4°C
- Contracts until 4°C
- Expands from 4°C to 0°C

The density of water:

- **1.** Prevents water from freezing from the bottom up.
- 2. Ice forms on the surface first—the freezing of the water releases heat to the water below creating insulation.
- 3. Makes transition between season less abrupt.

- When water reaches 0°C, water becomes locked into a crystalline lattice with each molecule bonded to to the maximum of four partners.
- As ice starts to melt, some of the hydrogen bonds break and some water molecules can slip closer together than they can while in the ice state.
- Ice is about 10% less dense than water at 4°C.

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

ASCENT DESCENT ?

AGRICULTURE

PUBLIC WATER SUPPLY

DOMESTIC

THERMAL POWER PLANT

INDUSTRIES

Water Myths and Realities

Myth	Reality
We have less water today than we did 100 years ago	Same amount of water is present on Earth, as was three billion years ago

Water Myths and Realities

Myth	Reality
Water from River Ganga is pure	Untreated water has microbial contaminants. Not fit for drinking
Bottled water is safer than tap water	Unlike tap water, the quality of bottled water is not necessarily monitored by government agencies.

Water use in certain countries

Country	Annual water use per capita (Gallons)	Residential total water use (%)	Total water use in Industry/ Agriculture (%)
USA	525,000	10	90
India	132,000	3	97
China	122,000	6	94

Drinking Water Consumption

- Adults Average 2 3 litres per day
- Children (10 Kg body wt.) 1 litre
- Infants (5 Kg) 0.75 litre

Dirty tap water causes Coloured water: Mystery solved health scare in city

Experts to investigate fish disaster

TIMES NEWS NETWORK

Lucknow: An expert committee was formed on Monday by housing and urban development minister Lalji Tandon, to get to the bottom of the ecological disaster that occurred in the Gomati, bringing the Jal Sansthan and Uttar Pradesh Pollution Control Board (UPPCB) in direct confrontation.

The five-member expert committee comprises one nominee from the district administration, two scientists from the Industrial Toxicology Research Centre (ITRC), one engineer from the Lucknow Municipal Corporation (LMC) and Rashid Khan, general manager of Jal Sansthan Rashid Khan. The committee is to submit its report within seven days.

TIMES NEWS NETWORK

Lucknow: Guess what do the UP chief minister Mayawati and urban development ministerLalji Tandon share apart from warm personal and political vibes? Stinking and yellow coloured water, supplied by the Jal Sansthan. Provided they ever bother to check, or are informed about it.

While the duo has not acknowledged the problem for obvious reasons, their

SC slams UP government over Gomati pollution

TIMES NEWS NETWORK New Delhi: Perturbed over

grant-in-aid."

The committee will collect and Water-hyacinth chokes the Gomati at Kud

tion: SC notice to 8 states

New Delini: Taking serious note of 15 municipalities. Panjwani had and as a matter of fact are totally continued nollution of Ganga river contended that CPCB was filing the analysis to the responsibility for the

Saturday, May 18, 2002 5

Epidemic catches officials napping

TIMES NEWS NETWORK

Allahabad: Two gastro- enteritis deaths in the district and the rising incidence of diarrhoea have not yet woken un authorities

secretaries and director-generals of the department, decided to set up special teams to monitor the sale of open food. However, despite the passage of a week, the urban

Polio epidemic is on the rise in state

New Delhi: The number of children crippled by the polic epidemic in Uttar Pradesh continues to increase steeply with the latest re-ports showing 347 cases of paralysis and a spillover into Delhi as well. Officials say the numbers are bound to increase as blood samples

Alarm bells ringing

- The number of children orip-pled by the polic spidemic in Uttar Pradesh continues to increase steeply.
- A reports shows 347 cases of paralysis and a spillover into Deht as well.

been covered," he says. In Azamgarh, officials say over 40 per cent houses with children were not in-cluded in immunisation drive at all.

Union minister for health and family welfare Shatrughan Sinha met the chief minister in Lucknow on Monday to express concern over this rapid increase in polio in the

WATER DISINFECTION TECHNIQUIES

- CARBON BLACK
- HALOG ENATION
- OZONIZATI ON
- UV LIGHT
- REVERSE OSMOSIS
- ELECTROCHEMICAL
- **DESALINATION**
- EXTREME BOILING

POPULAR DEVICES

CANDLE FILTER USHA BRITA AMRIT KUMBH BACT -O-KILL AQUA PURA AQUA PEN ZERO B AGUA GUARD

SPECIFICATIONS/GUIDELINES RELATED TO WATER

1	IS 10500:2012	Drinking Water Specification	
2	IS 13428: 1998	Packaged Natural Mineral Water – Specification	
3	IS 14543:1998	Package Drinking Water (Other than packaged natural mineral water) Specification	
4	IS 3025: 1964	Method of Sampling and Test for Water and Wastewater	
5	IS 12252: 1987	Polyalkyene terephthalates (PET &PBT) for their safe use in contact with food stuffs, pharmaceuticals, and drinking water	
6	IS 10151: 1982	Polyvinyl chloride (PVC) and its copolymers for its safe use in contact with foodstuffs, pharmaceuticals and drinking water.	
7	IS 10146: 1982	Polyethylene for its safe use in contact with foodstuffs, pharmaceuticals and drinking water.	
8	IS 10148: 1982	Positive list of constituents of polyvinyl chloride and its copolymers in contact with foodstuffs, pharmaceuticals and drinking water.	

The next WORLD WAR will be over WATER

? Why... [Situation]

The Indian situation

 Groundwater is the major source of water in our country with 85% of the population dependent.

 Groundwater water table decline - 33 centimeters per year.

Cities' ground water levels have fallen

% change in groundwater from 1998 to 2018.

The Indian situation

India receives abundant rains compared to other water scared countries but...

This map shows how much water the Indian infrastructure fails to store!

The prime minister said on 15th, Auigust, 2020 many states are reeling under the problem of acute water scarcity. PM Modi said his government is committed to provide drinking water to every household. This will be done under the Jal Jeevan Mission.

Solution

Solutions to water problems require the consideration of cultural, educational, communication and scientific aspects.

Plant Trees Avoid Pollution Conserve water Technologies and Innovations Water Purification Systems Seawater desalination Water Footprint

Solution

- Rain Water Harvesting
- Irrigation Water Management
- Hydrological projects Construction of Dams
- Artificial Recharge to Ground Water through Dug well

sAvE wAtEr SaVe WoRID

Be the first to clip this slide

Tap water

Bottled

water

- Tap water. ...
- Mineral Water....
- Spring water
- Well water
- Purified water
- Distilled water: Distilled water or dimineralised water is one where the water has been subjected to a treatment that removes all its minerals and salt by the process of reverse osmosis and distillation....
- Sparkling Water.

Sparkling water

Characteristics of Water: • Water is a good solvent

- Water never occurs in its pure form
- All waters contain some dissolved substances
- The quality of water is determined by these substances.
- It has the ability to dissolve many inorganic and organic substances.

Water Quality Parameters:

Water has its own

- Physical properties
- Chemical composition and
- Biological Properties

Physical Properties:

- Temperature
- Colour
- Odor
- Turbidity
- Electrical Conductivity

Chemical properties:

- pH
- Total Dissolved Solids(TDS)
- Major ions
- Minor or trace elements
- Hardness
- Salinity
- Alkalinity

Harmful Chemicals

- Chlorides
- Sulphates
- Iron
- Nitrates
- Heavy Metals
- Pesticides

- Poly Chlorinated Biphenyl (PCBs)
- •Polycyclic Aromatic Hydrocarbon (PAHs)
- •Tri Halo Methane
- Radioactive matterials

Biological Properties: Dissolved Oxygen (DO) Biochemical Oxygen Demand(BOD) Chemical oxygen Demand(COD) Microorganisms-Bacterial counts

Water Quality Parameters:

- Limits the suitability of water for different purposes
- Drinking
- Domestic consumption
- Agriculture
- Industrial Processes
- Cleaning and Recreation.

Water Quality Standards Permissible limits

- United States Public Health Drinking Water Standards(USPH)
- Indian Standards Institution (ISI)
- World Health Organization (WHO)

WATER AND HEALTH

Quality

Quantity

IS: 10500 - Indian Standard for Drinking Water

S.No.	Parameter	Requirement Desirable Limit
1.	pH	6.5-8.5
2.	Total Dissolved Solids (TDS) in mg/l	500
3.	Total Hardness (mg/l)	300
4.	Chloride (mg/l)	250
5.	Fluoride (mg/l)	1.0
6.	Nitrate (mg/l)	450
7.	Sulphate (mg/l)	200
8.	Cyanide (mg/l)	0.05
9.	Total Alkalinity (mg/l)	200
10.	Arsenic (mg/l)	0.01
11.	Mercury (mg/l)	0.001
12.	Cadmium (mg/l)	0.01
13.	Lead (mg/l)	0.05
14.	Iron (mg/l)	0.3
15.	Manganese (mg/l)	0.1
16.	Chromium as Cr^{6+} (mg/l)	0.05
17.	Copper (mg/l)	0.05
18.	Zinc (mg/l)	5.0
19.	Pesticide	absent
20.	Total Coliform Bacteria	95% of samples should not contain coliform in 100 ml 10 coliform / 100ml
21.	E. coliform Bacteria	Nil / 100ml

(ix)	Nickel(as Ni)mg/l,Max	0.02	Beyond this, it may cause allergic reaction	No relaxation	3025 (part54)	-
(x)	Poly chlorinated biphenyls mg/l, Max	0.0005	May be carcinogenic	No relaxation	ASTM 5175/APHA 6630	
(xi)	Trihalomethanes					
(a)	Bromoform mg/l Max	0.1	May be carcinogenic above this limit	No relaxation	ASTM D- 3973-85/ APHA	-
(b)	Dibromochloro methane mg/l, Max	0.1	-do-	-do-	-do-	
(c)	Bromodichloro methane mg/l, Max	0.06	- do-	-do-	-do-	-

Table. 5 Pesticides Residues limits and Test method

SI.No	Pesticide	Limit ~g/l	Test method USEPA AOAC/ISO
(i)	DDT(o,p and p,p-Isomers of DDT,DDE and DDD	1	508 AOAC 990.06
(ii)	Gamma-HCH (Lindane)	2	508 AOAC 990.06
(iii)	2,4D	3	515.1
(iv)	Isoproturon	9	532
(v)	Alachor	20	525.2,507
(vi)	Atrazine	2	525.2,8141A
(vii)	Aldrin/Dieldrin	0.03	508

Table.4 Parameters concerning radioactive substances (Clause 4)						
SI. No	Substance or Characterstic	Requirement (Desirable limit)	Undesirable Effect outside the desirable	Permissible limit in the absence of alternate source	Methods of Test (Ref to IS)	Remarks
(i)	Radioactive Materials: (a) Alpha emitters Bq/l,Max	0.1	May be carcinogenic above this limit	0.1	IS 14194 (Pt 2)	-
	(b) Beta emitters Bq/l Max	1.0	-	1	IS 14194 (Pt 1)	_

Total Daily Intake (TDI)

Human Health Risk

Acceptable Daily Intake (ADI)

If value is > 1 than health risk

Address <u>uncertainty</u>

Figure 1. Limnology is the study of inland waters. Like oceanography, it is an integrative science that draws from many disciplines.

Preservation

Processing

Indian Institute of Toxicology Research, Lucknow

Analysis

Collection of water sample

Analysis

Instrument Application

Documentation

Relative Contributions to Analytical Error

Overall (expanded) error = (individual errors)

Sampling is Important!

✓ <u>Clear definition of</u> <u>sampling objectives</u>

- ✓ Sample quality
- ✓ Sample integrity
- ✓ Sample
 representativeness

Russell CLU-IN presentation 101

Sampling Personnel works under supervision of Qualified and trained personnel.

Accuracy versus Precision

Precision & Accuracy

• Is measured as "repeatability " or reproducibility *Repeatability*

Measurement is repeated with a minimum of variations (same person, same laboratory, same equipment, over a short period of time.

Reproducibility

Measurement is repeated with as much variation as possible. (Different analyst, different laboratory, different equipment, over a long period of time).

Limit of Detection (LOD)

- Point where the variability of the measurement is such that it is impossible to distinguish between random fluctuation in the value measured and actual signal.
 - $-LOD = Y_B + 3XS_B$
 - Y_{B} = Mean value measured from the blank
 - S_B Standard Deviation of the value measured from the blank

Where S=Height of Signal N=Height of Noise

Limit of Detection

Replicate (n)	Instrument response	Calculated Concentration (ppb)
1	29550	0.100
2	28653	0.097
3	29401	0.099
4	28532	0.097
5	29712	0.101
6	29983	0.101
7	28167	0.095
Mean	0.099	
StdDev	0.002	
3 Times StdDev	0.007	
Detection Limit	0.106	

Limit of Quantification (LOQ)

 Point where the measured value could be quantified reliably

 $LOQ = Y_B + 10XS_B$

- Y_{B} Mean value measured from the blank
- S_B Standard Deviation of the value measured from the blank
Limit of Quantification (LOQ)

Replicate (n)	Instrument response	Calculated Concentration
	00550	
1	29550	0.100
2	28653	0.097
3	29401	0.099
4	28532	0.097
5	29712	0.101
6	29983	0.101
7	28167	0.095
Mean		0.099
StdDev	0.002	
10 Times StdDev		0.020
LOQ		0.119

Requirements

Calibrated instruments

Certified glasswares

Analytical grade reagents

Skilled manpower

Instrumentation

Spectrophotometer/Colorimeter

Atomic Absorption Spectrophotometer (AAS)

Inductively Coupled Plasma (ICP) Spectrophotometer

Indian Institute of Toxicology Research, Lucknow

Physico-chemical Parameters of Drinking Water

Physico-chemical Tests

- Image: Image
- **Temperature**
- **Conductivity** +
- **Dissolved Oxygen** +
- **Turbidity** +
- Colour ٠
- **Odour** ٠
- Hardness
- **Dissolved Solids**
- Nitrate
- Fluoride
- Chloride
- **Bromide**
- lodide
- **Sulphate**
- Indian Institute of Toxicology

Research, Lucknow

Metals ✤ As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn,

- **Organic Contaminants**
 - Chlorinated Compounds
 - Trihalomethanes

Ni, Pb, Zn, Se

- Pesticides
- Polycyclic Aromatic Hydrocarbons
- Benzene and lower alkyl benzene
- PCBs
- Phthalates
- BOD
- COD

Parameters and Test Methods

No	Parameter	Unit	Methods
1	pH	-	Electrometeric method
2	Turbidity	NTU	Turbidity Meter
3	True Color	Pt-Co Unit	Visual Comparison method
4	Electrical Conductivity	µS/cm	Electrical Conductivity method
5	Iron	mg / L	FerroVer method
6	Manganese	mg / L	PAN method
7	Sulfate	mg / L	SufalVar Turbidimetric method
8	Fluoride	mg / L	SPADNS method
9	Alkalinity	mg / L	Titration method
10	Total Hardness	mg / L	EDTA Titrimetric method
11	Chloride	mg / L	Argentometric method

Techniques used in water Quality Checks in Chemical
Direct Instrument use for Physical parameters:
pH,Conductivity,temperature.turbidity
By use of specific equipment after processing :heavy
metals,pesticide,PAHs,PCBs,THM
By Conventional method Like Gravimetric and volumetric analysis.

•

Gravimetric Analysis

TDS Sulphate

Volumetric Analysis

TH,Ca,Mg Chloride Alkalinity How to Perform a Successful Gravimetric Analysis

- What steps are needed?
- 1. Sampled dried, triplicate portions weighed
- 2. Preparation of the solution
- 3. Precipitation
- 4. Digestion
- 5. Filtration
- 6. Washing
- 7. Drying or igniting
- 8. Weighing
- 9. Calculation

Gravimetric Analysis

- Gravimetric Analysis one of the most accurate and precise methods of macro-quantitative analysis.
- Analyte selectively converted to an insoluble form.
- Measurement of mass of material
- Correlate with chemical composition
- Why?
- Simple
- Often required for high precision

Gravimetric Analysis

- How?
- Quantitative collection of material of known composition
 - Precipitation of analyte with selective agent
 - Volitization and collection of analyte
 - w/o loss of material in handling/processing
 - Free from solvent, impurities
- Determination of mass
 - Direct or
 - By difference

Use a desiccator to cool a dried or ignited sample.

Cool a red hot vessel before placing in the desiccator.

Do not stopper a hot weighing bottlle (creates a partial vacuum on cooling).

Fig. 2.16. Desiccator and desiccator plate.

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

CaCl₂ is commonly used.

It needs periodic replacement when wet or caked.

Table 2.5Some Common Drying Agents

Agent	Capacity	Deliquescent ^a	Trade Name
CaCl ₂ (anhydrous)	High	Yes	
CaSO ₄	Moderate	No	Drierite (W. A. Hammond Drierite Co.)
CaO	Moderate	No	
MgClO ₄	High	Yes	Anhydrone (J. T. Baker Chemical Co.);
(anhydrous)			Dehydrite (Arthur H. Thomas Co.)
Silica gel	Low	No	
Al_2O_3	Low	No	
P_2O_5	Low	Yes	

^aBecomes liquid by absorbing moisture.

This provides a good seal and prevents air bubbles from being drawn in. Suction from the weight of the water in the stem increases the filtration rate. Let the precipitate settle in the beaker before beginning filtration.

Fig. 2.23. Properly folded filter paper.

These are ashless filter papers.

They are ignited away after collection of the precipitate.

Use for gelatinous precipitates.

Table 2.6Types of Filter Papers

Precipitate	Whatman	Schliecher and Schuell
Very fine (e.g., BaSO ₄)	No. 42 (2.5 m m)	No. 589/2 or 5, Blue or Red Band (2–4 m m)
Small or medium (e.g., AgCl)	No. 40 (8 m m)	No. 589/2, White Band (4-12 m m)
Gelatinous or large crystals (e.g., $Fe_2O_3 \cdot xH_2O$)	No. 41 (20-25 m m)	No. 589/1, Black Band (>12-25 m m)

VOLUMETRIC ANALYSIS

Following methods or techniques are being used to measure any chemical parameter

- Volumetric
- ✤Gravimetric
- Potentiometric
- Coulometric
- Voltametric
- Spectrometry
- Mass spectrometry
- Chromatography
- Chromatography mass spectrometry

Percentages of different methods of analysis used in the certification of Standards samples of geological objects in1951-2005. %

Methods of analysis	1951	1971-1973	2004-2005
Gravimetric	28.5	16.4	4.20
Titrimetric	12.8	16.9	3.5
Electrochemical	1.0	1.3	0.4
Colorimetric/photomet ric	24.1	12.8	7.1
Atomic emission	15.0	21.9	14.2
Flame photometer	6.4	9.5	3.5
Atomic absorption	-	6.7	10.4
X-ray fluorescence	0.7	7.2	22.1
Mass spectrometer	3.7	-	24.1

Storage Condition: Room Temperature= 25±2°C needs BOD incubator

Fridge or deep fridge:

Traceability to be maintained by having
CRMs or high purity Reference material
Calibrated analytical balance
Calibrated weight box
Calibrated thermometer
Calibrated Glass wares

Consumption records of CRMs/RM By documentation

Introduction: - A technique for determining the concentration of a solution by measuring the volume of one solution needed to completely react with another solution. Titration process involves addition of solution of known conc. from burette to the measured volume of analyte.

<u>Principle of titration</u>:- It is based on the complete chemical reaction between the analyte and the reagent (titrant) of known concentration.

Analyte + Titrant \rightarrow Product

Terms used in titration Analyte:- The solution of unknown concentration but known volume. Titrant:- The solution of known concentration.

Standard solution: - A solution of known concentration is called the standard solution. Types of standard solution:-1) Primary standard:- It has certain properties:-(a)Extremely pure. For e.g. Na₂CO₃, KHP (b)Highly stable.

(c) Can be weighed easily.

Secondary standard:- It has certain

properties:-

(a) Less pure than primary standard.
(b) Less stable than primary standard.
(c) Can not be weighed easily.

For e.g. NaOH, HCl

Euivalence Point: - Point where the amount of

two reactants are just equivalent.

<u>End</u> point:- Point at which the reaction is observed to be complete, this point is usually observe with the help of indicator. Indicator: - An auxiliary substance which helps in the usual detection of the completion of the titration process at the end point. Methyl examples:-For orange, Phenolphthalein, Cresol red, Thymol blue.

Concentration Terms:-

The concentration of standard solutions (titrants) are generally expressed in units of either molarity (C_M , or M) or normality (C_N , or N).

<u>Molarity</u> (M):-It is the number of moles of a solute per liter of solution.

<u>Normality</u>:- It is the gram equivalent weight of solute dissolved per litre of solution.

<u>Molality</u>:- It is the number of moles of solute present in per kilogram of solvent. *Titrimetric calculation :-*

It is based on the following law of equivalence:-

	NaVa	=	NsVs
		or	
	MaVa	=	MsVs
Where,	Na is the normality of analyte. Va is the volume of the analyte.		
	Ns is the normality of standard solution.		
	Vs is the vo	lume of sta	ndard solution used.
	Ma is the n	nolarity of a	malyte.
	Ms is the m	olarity of s	tandard solution.

Acid-Base Indicators

Indicator	Color on acidic side	Range of color change	Color on basic side
Methyl violet	Yellow	0.0–1.6	Violet
Bromophenol blue	Yellow	3.0-4.6	Blue
Methyl orange	Red	3.1-4.4	Yellow
Methyl red	Red	4.4-6.3	Yellow
Litmus	Red	5.0-8.0	Blue
Bromothymol blue	Yellow	6.0-7.6	Blue
Phenolphthalein	Colorless	8.3-10.0	Pink
Alizarin yellow	Yellow	10.1-12.0	Red

Range of color indicator change

Complexometric Titrations:- As the name indicates, the end point is seems by formation of a complex molecule. Here titrant and titrand react to form a complex till end point is reached. Once complex is formed, the complex is stable and not further reaction takes place.

 $Ca^{+2} + EDTA^{-4} - ---> CaEDTA^{-2}$ $Mg In + EDTA^{-4} - ---> MgEDTA^{-2} + In^{-2}$

EDTA Titrations

Auxiliary Complexing Agents

- 2.) Illustration:
 - > Titration of Cu^{+2} (CuSO₄) with EDTA
 - > Addition of Ammonia Buffer results in a dark blue solution
 - Cu(II)-ammonia complex is formed
 - > Addition of EDTA displaces ammonia with corresponding color change

EDTA Titrations

Metal Ion Indicators

- 2.) Illustration
 - > Titration of Mg²⁺ by EDTA
 - Eriochrome Black T Indicator

EDTA Titrations

Metal Ion Indicators

3.) Common Metal Ion Indicators

> Most are pH indicators and can only be used over a given pH range

Name	Structure	pK _a	Color of free indicator	Color of meta ion complex
Calmagite	$OH HO$ $OH N = N - OH SO_3^-$ $CH_3 (H_2In^-)$	$pK_2 = 8.1$ $pK_3 = 12.4$	H_2 In red HIn ²⁻ blue In ³⁻ orange	Wine red
Eriochrome black T	$\begin{array}{c} OH \\ OH \\ O_{3}S \\ O \\ $	$pK_2 = 6.3$ $pK_3 = 11.6$	H ₂ In ⁻ red HIn ²⁻ blue In ³⁻ orange	Wine red
Murexide	$\begin{array}{c} \underset{O}{\overset{HN}{\longrightarrow}} & \underset{O}{\overset{O}{\longrightarrow}} & \underset{O}{\overset{O}{\overset{O}{\longrightarrow}} & \underset{O}{\overset{O}{\overset{O}{\longrightarrow}} & \underset{O}{\overset{O}{\overset{O}{\overset{O}{\longrightarrow}} & \underset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{$	$pK_2 = 9.2$ $pK_3 = 10.9$	H ₄ In ⁻ red-violet H ₃ In ²⁻ violet H ₂ In ³⁻ blue	Yellow (with Co ²⁺ , Ni ²⁺ , Cu ²⁺); red with Ca ²⁺
Xylenol orange	$\begin{array}{c} \begin{array}{c} CH_3 \\ -O_2C \\ -O_2C \end{array} \\ HN^+ \\ SO_3^- \\ (H_3\ln^3-) \end{array} \\ \begin{array}{c} CH_3 \\ +NH \\ CO_2 \\ CO_2^- \\ CO_2^- \end{array}$	$pK_2 = 2.32$ $pK_3 = 2.85$ $pK_4 = 6.70$ $pK_5 = 10.47$ $pK_6 = 12.23$	$\begin{array}{lll} H_{s}ln & yellow \\ H_{s}ln^{2-} yellow \\ H_{s}ln^{3} & yellow \\ H_{2}ln^{4-} & violet \\ HIn^{5} & violet \\ In^{6-} & violet \end{array}$	Red
Pyrocatechol violet		$pK_1 = 0.2$ $pK_2 = 7.8$ $pK_3 = 9.8$ $pK_4 = 11.7$	H ₄ In red H ₃ In yellow H ₂ In ²⁻ violet Hin ³⁻ red-purple	Blue

<u>Redox titration</u>:- Redox titration is based on the redox reaction (oxidation-reduction) between analyte and titrant.

For example:-

 $6 Fe^{2+} + 14 H^{+} + Cr_2O_7^{2-} => 6 Fe^{3+} + 2Cr^{3+} + 7 H_2O$ $MnO_4^{-} + 8 H^{+} + 5 Fe^{2+} => Mn^{2+} + 5 Fe^{3+} + 4 H_2O$

Precipitation titrations: - The titrations which are based on the formation of insoluble precipitates, when the solutions of two reacting substances are brought in contact with each other, are called Precipitation titration.

 $Ag^+(aq)+Cl^-(aq) \rightleftharpoons AgCl(s)$

Requirement For Successfu Composite Volumetric Titration

- ★ Reaction must be stoichiometric, well defined reaction between titrant and analyte.
- ★ Reaction should be rapid.
- Reaction should have no side reaction, no interference from other foreign substances.
- ★ Must have some indication of end of reaction, such as color change, sudden increase in pH, zero conductivity, etc.
- Known relationship between endpoint and equivalence point.

- Concentration: is a general term expressing the amount of solute contained in a given material.
 Expressed by different ways
- Molarity(M): The number of moles of solute divided by the number of liters of solution containing the solute. (is gram molecular weight dissolved in one liter of solution)
- Molarity = moles of solute / volume in liters
- Milli moles of solute / volume in milliliters.
- Moles = weight (gms) / MW or
- Millimoles = weight(mg) / MW

Normality (N)

- Defined as no of equivalents of solute divided by the number of liters of solution containing the solute. (gm equivalent weight dissolved in one liter of solution)
- Normality = equivalents of solute / volume in liters
- Milli eq. of solute / volume in milliliters.
- Equivalents = weight (gms) / EW or
- Milliequivalent = weight(mg) / EW

Relation of Normality and Molarity

- Molarity = weight / MW x Volume
- MW = Weight / Molarity x volume similarly
- Normality = weight / EW x Volume
- EW = Weight / normality x volume
- EW = MW / h
 - Where h reacting unit.
 - For acid H⁺ is reacting unit and for base OH⁻
 - For Oxdⁿ redⁿ e⁻ is reacting unit
 - For lonic species valences

Equivalent weight

- Is defined as part by wt of substance which is chemically equivalent to one part by wt of hydrogen or 8 part by wt of oxygen or 35.5 part by wt of chlorine.
- Thus in finding out equient. wt we find out how many grams of that sub are directly or indirectly eq to one gm of hydrogen
 It depends on reaction in which it takes place

Weight percent (w/w) = weight of analyte x 100 weight of sample Volume percent (v/v) = volume of analyte x 100 volume of sample

Weight percent (w/v) = weight of analyte x 100 volume of sample

Requirements of Primary Standards

- It should be 100% pure or with known purity
- Should be stable to drying temp.
- Usually solid to make it easier to weigh
- Easy to obtain, purify and store, and easy to dry
- Inert in the atmosphere
- High formula weight so that it can be weighed with high precision
- It should not absorb moisture, or should not react with oxygen or CO2
- Reaction with analyte should be single, rapid complete and stoichiometric

Equivalent Weight : It is defined as the number of parts by weight, chemical species combined with or displaced by 1.008 parts of hydrogen,8patrs of oxygen or 35.5 parts by weight of chlorine and 127 part of iodine..

Oxidizing Agent :Pot.Permagnate

Reactions of oxalic acid

A. Chemical equations

Reduction half reaction : $2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$ Oxidation half reaction : $H_2C_2O_4 + [O] \xrightarrow{60^{\circ}C} 2CO_2 + H_2O] \times 5$

 $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$

2KMnO₄ = 50 2MW 5x16 Eq Wt =MW/5 =158/5=31.606 Oxidizing Agent :Pot.dichromate

 $K_2Cr_2O_7 + 4H_2SO_4 = 4H_2O_4 + Cr_2(SO_4)_3 + 4H_2O_4O_4$

Available Oxygen =3atoms=3x16

 $K_2Cr_2O_7 = 3O$ MW= 3x16 Eq Wt = MW/6= 294.18/6= 49.03

Reducing Agent Equivalent Weight Ferrous Sulphate $2FeSO_4 + H_2SO_4 + O = Fe_2(SO_4)_3 + H2O$ $2FeSO_{A} = O$ 2MW = 16Eq Wt =2MW/2=MW=152**Ferrous Ammonium sulphate** $2[FeSO_4.(NH_4)_2SO_4.6H2O] + H_2SO_4+O$ $Fe_2(SO_4)_3+2(NH_4)SO_4+13H2O$ **O=16** Eq Wt=2MW/2=392

```
Oxalic Acid
COOH
       .2H_{2}O + O = -2CO_{2} + 3H_{2}O
COOH
MW = O = 16
Eq Wt=MW/2= 126/2=63
Sodium thiosulphate(Hypo)
2Na_2S_2O_3+I_2 Na_2S_4O_6+2NaI
2MW = 2I
2 MW= 2x127
EqWt=MW
```

Iodimetric Titrations: Iodimetric titrations are defined as those iodine titration in which a standard iodine siolotion is used as oxidants and iodine is directly titrated with the reducing agents like thiosulphate, sulphite, arsenite by titrating them against standard solution of iodine run in from a burette .

Iodometric Titrations: Iodometric titrations are defined as those iodine titration in which some oxidiging agent librates iodine from an iodide and the librated iodine is titrated against standards solution of reducing agent from the burette.

Some basic question generally asked to chemist :

Have Chemical Instruments improved in recent years?
Do Chemists provide meaning full answer to problems?
Are chemists providing answer with better accuracy and precision compared to 60 years ago?

YES : There has been revolution in Analytical chemistry

New instruments .

➤Computing power and improved quality of information through computing .

➢ More detailed analysis can be done.

> Detection of ultra trace amounts.

➢ Faster methods of sample preparation :

- o microwave
- o Ultrasonic

Fluoride

Fluorides are properly defined as binary compounds or salts of fluorine with another element (like Na, K etc.) combined chemically in the form of fluorides.

High pH of water favours high fluoride content in water.

Naturally, although the controlled enrichment of drinking water with **Fluoride is essential for humans** because traces of fluorine are necessary for normal mineralization, formation of caries – resistant enamel, strong teeth, healthy bones and for normal reproduction.

According to WHO 1984 and Bureau of Indian Standard Drinking Water Specification 2002, the maximum permissible limit of fluoride in drinking water is 1.5 ppm and highest desirable limit 1 ppm.

Fluoride concentration above 1.5 ppm in drinking water cause dental fluorosis and much higher concentration skeletal fluorosis, low concentration (0.5 ppm) provide protection against dental caries.

FLUOROSIS

Dental Fluorosis

Skeletal Fluorosis

- Permissible limit of fluoride in drinking water is 1.5 ppm and highest desirable limit 1 ppm.
- Fluoride concentration above 1.5 ppm in drinking water cause dental fluorosis much higher concentration skeletal fluorosis.
- Low fluoride concentration (0.5 ppm) provide protection against dental caries.

Indian Institute of Toxicology Research, Lucknow

Electrode Method (0.1 to > 10 mg/l)

Selection of Methods

SPADNS Colorimetric Method(0 to1.4mg/l)

Sampling & Storage: Polythene/Glass bottle rinsed with portion of sample. Dechlorination using sod. arsenite rather than sod thiosulphate.

Preliminary Distillation Step: To remove nonvolatile materials from water.

400ml DW +200ml Conc. sulphuric acid

SPADNS Spectrophotometric Method for Analysis of Fluoride

- Fluoride reacts with certain zirconium dyes to form a colourless complex and another dye
- The dye becomes progressively lighter as fluoride concentration increases
- Absorbance is measured at 570 nm
- Prepare calibration curve using absorbance values for known standards
- Read fluoride values for the samples

SPECTROPHOTOMETER

SPADNS

Sod. 2-(parasulfophenylazo)-1,8 dihydroxy3,6naphthalene disulphate

Figure 2: Fluoride standard calibration curve.

Ion Selective Electrode Method

- It is ion selective sensor, Laser type doped Lanthanum fluoride crystal across within a potential is established by fluoride solution.
- Ag AgCl, Cl(0.3M),F90.001M) LaF3 Test

Phenolic Compound

a. Principle: Steam-distillable phenols react with 4-aminoantipyrine at pH 7.9 \pm 0.1 in the presence of potassium ferricyanide to form a colored antipyrine dye. This dye is extracted from aqueous solution with CHCl₃ and the absorbance is measured at 460 nm. This method covers the phenol concentration range from 1.0 µg/L to over 250 µg/L with a sensitivity of 1 µg/L.

Sample Collection for Heavy Metals

All metals except Hg :

Container : Reagent bottle or polyethylene bottle

Combining with 0.5% HNO3

Store up to maximum 1 month.

Hg:

Prewashed reagent bottle. Rinse the bottle twice with sample.

2 ml of 4M nitric acid and 5 ml of 2.5% Pot. Dichromate.

Store up to 5 weeks (maxm) in freeze.

Organic matrix + Oxidizing agent CO2+H2O

C6H12O6 + 6O2 → 6CO2 + 6H2O

Type of Sample Preparation

Fusion With alkali carbonates

Cold digestion For Volatile metals (Hg, As) estimation

Digestion of organic using nascent Oxygen produced by reaction of Potassium permagnate with Conc. sulfuric acid.

 $2KMnO_4 + 3H_2SO_4 \stackrel{>}{E} K_2SO_4 + 2MnSO_4 + 3H_2O$ +50 (CH₂)n + H₂O $\stackrel{>}{E} CO_2 + H_2O$

Example:

0.5 g of tissue or 1ml blood in conical flask containing 5 ml conc. sulfuric acid(cooled in ice bath).

Stopper the flask and heat for 2 hrs at 70 °C.

15 ml of 20% w/v hydroxylamine hydrochloride is added to reduce the excess of permagnate.

The sample is ready for analysis using AAS –VGA.

Figure : Times typically required for digestions

Table: Effect of Laboratory Atmosphere on PbBlankLevels

	ng Pb found in 1 mL of Acid	
Acid Blank	2	
Covered for 2 hrs on bench	1, 1.5	
Uncovered for 2 hrs on bench	5.5, 6.2	
Covered in hood for 3 hrs	4.5	
Uncovered in hood for 3 hrs	25	

ARSENIC TOXICITY

- Arsenite As (III) is more toxic than Arsenate As (V).
- Maximum permissible level for arsenic in drinking water is 10 ppb.

Indian Institute of Toxicology Research, Lucknow

Arsenic

Spectrophotometer


```
Atoms like As,Sb,Se,Te,Bi,Sn,Hg and Zr
```

Causing less availability of atomize atoms , resulting less sensitivity

Hence it is required to convert them into their respective hydride

Atomize at low temperature say 1000°C.

Atomic Absorption Spectrophotometer

Atomic Spectrophotometer

Atom Excited atom Atom emission/fluorescence

Quantitation _

_____AAS,

Pesticides

Pesticides are widely used in agriculture to protect crops against insects (insecticides) fungus (fungicides) and weed (herbicides).

- Organochlorine
- Organophosphorus
- Carbamates
- Botanical pesticide

Strength of solution is expressed in

- Percentage
- Molality
- Molarity
- Normality
- Parts per million (ppm)
- Parts per billion (ppb)
- Parts per trillion (ppt)

Concept of ppm & ppb

One part per million (**ppm**): Denotes one part per 1,000,000 parts, one part in 10⁶, and a value of 1×10^{-6} . This is equivalent to one drop of water diluted into 50 liters (roughly the fuel tank capacity of a compact car), or one second of time in approximately 11½ days. 1mm in 10 Km. **ppm= mg/kg = µg/g**

One part per <u>billion</u> (**ppb**): Denotes one part per 1,000,000,000 parts, one part in 10^9 , and a value of 1×10^{-9} . This is equivalent to 1 drop of water diluted into 250 <u>chemical drums</u> (50 m³), or one second of time in approximately 31.7 years. 10 ppb= A pinch of salt in 10 tons potato chips . 1mm in 1000 Km (approxm distance between Lucknow and Kolkata)

ppb= µg/kg = ng/g

Pesticide Residue Analysis :

- 1. Sampling
- 2. Storage
- 3. Extraction
- 4. Demoisturization
- 5. Clean up
- 6. Concentration
- 7. End Analysis
- 8.Identification and Quantification

Extraction

Liquid –Liquid Extraction using separating funnel

Solid Sample using solid-liquid Extraction: Soxlet Apparatus

Solid Phase Extractor (SPE)

Demoisturization : Using anhyd. Sodium sulphate

Cleanup: Using column Chromatography:-

- Alumina
 - Silica

•Florosil (Magnesium silicate)

Pre wet column with 20ml n-hexane, load the concentrate extract and elute with mixture of diethyl ether with n-hexane (6%,15%,50%)

Concentration of Extract (i) By using Rotary Evaporator

(ii) By using gentle stream of nitrogen

In the animation below the red molecules are more soluble in the liquid (or less volatile) than are the green molecules.

Detectors

Detector	Туре	Support gases	Selectivity	Detectability	Dynamic range
Flame ionization (FID)	Mass flow	Hydrogen and air	Most organic cpds.	100 pg	107
Thermal conductivity (TCD)	['] Concentration	Reference	Universal	1 ng	107
Electron capture (ECD)	Concentration	Make-up	Halides, nitrates, nitriles, peroxides, anhydrides, organometallics	50 fg	10 ⁵
Nitrogen-phosphorus	Mass flow	Hydrogen and air	Nitrogen, phosphorus	5 10 pg	106
Flame photometric (FPD)	Mass flow	Hydrogen and air possibly oxygen	Sulphur, phosphorus, tin, boron, arsenic, germanium, selenium chromium	, 100 pg	10 ³
Photo-ionization (PID)	Concentration	Make-up	Aliphatics, aromatics ketones, esters, aldehydes, amines, heterocyclics, organosulphurs, some organometallics	, 2 pg	107
Hall electrolytic conductivity	Mass flow	Hydrogen, oxygen	Halide, nitrogen, nitrosamine, sulphur		

Figure 1. Extracted pesticides standard TIC.

PCBs

- No known natural sources Belong to class of halogenated aromatic hydrocarbons
- Family of chemicals with biphenyl nucleus and varying number of chlorine atoms (1 – 10)
- 209 different congeners chemical and toxicologic properties vary
- Toxicity varies with degree of chlorination and position of chlorine atoms

Toxic Effects Noted

- PCBs
 - Wide ranging and varying with species!
 - Endocrine disruption (Brouwer et al. 1989; Subramanian et al. 1987; Boon et al. 1992)
 - Immune suppression (Lahvis et al. 1995; Jepson et al. 1999)
 - Reproductive failure (Reijnders 1986)

Table 1. The 51 Compounds Analyzed Using the GC/MS/ MS Method				
1,2,4-Trichlorobenzene	p,p'-DDE	PCB 28		
Hexachlorobutadiene	Dieldrin	PCB 52		
Dichlobenil	o,p'-TDE	PCB 101		
alpha-HCH	Endrin	PCB 118		
beta- <mark>H</mark> CH	beta-Endosulphan	PCB 153		
Hexachlorobenzene	p,p'-TDE	PCB 138		
gamma-HCH	o,p'-DDT	PCB 180		
delta-HCH	p,p'DDT	Cyfluthrin		
Chlorothalonil	Methoxychlor	Cypermethrin		
Heptachlor	Captan	Fenvalerate		
Aldrin	EPTC	Deltamethrin		
Isodrin	Tecnazene	Phorate		
cic-Heptachlor Epoxide	Trifluralin	Tri-allate		
trans-Heptachlor Epoxide	Disulphoton	Chlorpyritos- methyl		
o,p'-DDE	Fenitrothion	Parathion-ethyl		
alpha-Chlordane	cis-Permethrin	Chlorpyrifos-ethyl		
alpha-Endosulphan	trans-Permethrin	Carbophenothion		

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and relocated in the environment as a result of the incomplete combustion of organic matter. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher systems including humans. Although various physicochemical methods have been used to remove these compounds from our environment, they have many limitations.

Trihalomethane

Trihalomethanes (THM) are a group of four chemicals that are formed along with other disinfection by products when chlorine or other disinfectants used to control microbial contaminants in **drinking water** react with naturally occurring organic and inorganic matter in **water**.

Chlorination

 the process of adding <u>chlorine</u> (Cl 2) or hypochlorite to water. This method is used to kill certain bacteria and other microbes in <u>tap water</u> as chlorine is highly toxic. In particular, chlorination is used to prevent the spread of waterborne diseases such as cholera, dysentery, and typhoid.

The THMs forming

When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odorless, but harmful and potentially toxic. The quantity of byproducts formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water.

10

Trihalomethanes (THMs)

THMs are a class of chemical compounds derived from methane (CH4) in which 3 of the 4 H atoms have been replaced by halogens Possibilities in drinking water include CHCl2Br, CHClBr2 and CHBr3. But the most prevalent is chloroform, CHCl3.

The Health Effects of THMs

THMS	Compound	Adverse effects		
	CHCL3	Cancer, liver, kidney and adversely affect the process of reproduction.		
	CHCLBr2	The kidney affects the nervous system, liver, kidney and reproduction.		
	CHCL2Br	Cancer, liver, kidney and affects the process of reproduction		
	CHBr2	Cancer, nervous system, liver, kidney		

100

Radiological aspects:

Radioactivity should be as low as possible Guideline values-Gross alpha activity-0.5 Bq /L Gross beta activity- 1.0 Bq /L 1Bq= 1 disintegration per second

Effects of radioactivity on water

Damage to tissues

Risks

- Cells
- DNA and other vital molecules
- Cancer
- birth defects
- Abnormalities
- Death
Natural radioactivity

- The element whose nuclei spontaneous disintegrate are called *radioactive element*.
- Example of natural radioactivity are:-

$$^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He$$

$$^{234}_{90}Th \longrightarrow ^{234}_{91}Pa + ^{0}_{-1}e$$

$$^{226}_{88}Ra \longrightarrow ^{222}_{86}Th + ^{4}_{2}He$$

Evaluation of measurement uncertainty

Sources of uncertainty in analysis

ii) MICROBIOLGICAL ASPECTS

Bacteriological indicators

Virological aspects

Biological aspects

Bacteriological quality of drinking water

ORGANISMS	GUIDELINE VALUE
All water intended for drinking	Must not be detectable in any 100ml sample
Treated water entering distribution system (E.coli ,total coliform count)	Must not be detectable in any 100ml sample
Treated water entering distribution system (E.coli ,total coliform count)	Must not be detectable in any 100ml sample In c/o large supplies, must not be present in 95% of samples taken throughout any 12month period

6.Sampling

Sampling plan & methods

Laboratory involved in sampling must have:

- Sampling Plan.
- ✤SOP for sampling.
- Work instruction for sampling.
- Field data sheets.
- ✤Necessary PPE.
- Sampling tools.
- Specific pre washed Containers.
- Preservatives.
- Equipments and chemical for on site testing.
- Sample storage facility.
- Vehichle for transport of samples to the laboratory.

sampling methoda) selection of samples or sitesb) sampling planc) preparation & treatment of samples

Stratified Sampling

 Population with some distinct categories can be organized into separate "stratum" which can be sampled as an independent sub-population, out of which individual elements can be randomly selected.

O LightCastle Data

The laboratory shall retain records of sampling data that forms part of the testing or calibration that is undertaken. These records shall include, where relevant:

а	reference to the sampling method used;
b	date and time of sampling;
С	data to identify and describe the sample (e.g.
	number, amount, name);
d	identification of the personnel performing sampling;
е	identification of the equipment used;
f	environmental or transport conditions;
g	diagrams or other equivalent means to identify the
	sampling location, when appropriate;
h	deviations, additions to or exclusions from the
	sampling method and sampling plan.

7.Handling of Test Items

The laboratory shall have a procedure for the transportation, receipt, handling, protection, storage, retention, and disposal or return of test or calibration items, including all provisions necessary to protect the integrity of the test or calibration item,

Types of waste. A detailed explanation of the definition of waste can be four In Annex 2 of The Scottish Office Environment Department Circular 10/94

8.Ensuring the validity of results

Everyone makes mistakes!!

WHAT IS QUALITY CONTROL?

quality control

a process that helps a company make sure it creates quality products and that staff and management alike make minimal mistakes

OStudy.com

Quality ?

Consistency

- Accuracy
- Precision
- •Right result
 - First time
 - Every time

CBSE Board Examination (PT Participation)

Home Examination of one section(Intra –Laboratory Comparison)

Examination of all sections of a class (ILC)

High Accuracy High Precision Low Accuracy High Precision High Accuracy Low Precision Low Accuracy Low Precision

>use of reference materials or quality control materials;

>use of alternative instrumentation that has been calibrated to provide traceable results;

Functional check(s) of measuring and testing equipment;

>use of check or working standards with control charts, where applicable;

intermediate checks on measuring equipment;

replicate tests or calibrations using the same or different methods;

➤ retesting or recalibration of retained items;

>correlation of results for different characteristics of an item;

➤ review of reported results;

➢intralaboratory comparisons;

➤testing of blind sample(s).

Quality Assurance vs. Quality Control

Quality Assurance

Quality Control

An overall management plan to guarantee the integrity of data (The "system") A series of analytical measurements used to assess the quality of the analytical data (The "tools")

Factors influencing quality: Analytical

PROFICIENCY OF PERSONNEL: Education, Training, Aptitude, Competence, Commitment, Adequate number, CME, Supervision, Motivation

REAGENTS STABILITY, INTEGRITY AND EFFICIENCY: Stable, Efficient, Desired quality, Continuously available, Validated EQUIPMENT RELIABILITY: Meet technical needs, Compatible, User & maintenance friendly, Cost effective, Validated

USE OF APPROPRIATE CONTROLS:

- Internal: Labs, Calibrated against national
- External: Supplied by manufacturer, National, International

ANALYTICAL FACTORS

DOCUMENTATION: All the written policies, plans, procedures, instructions and cords, quality control procedures d recorded test results involved in providing a service or the SPECIFICITY & SENSITIVITY OF SELECTED TEST: Adequate ST, Sufficient SP, cost effective, compatible with, available infrastructure and expertise, interpretable, meets the needs/ objectives, validated

> Procedural reliability using Standard Operating Procedures

Monitor performance by comparison with other lab:

a) PT

b) Interlaboratory comparison

9.Reporting the Result

Purification on Small Scale

- BOILING: for 5-10 minutes kills almost all organisms & removes temporary Hardness.
- DISTILLATION: not commonly used due to higher cost, used in Labs. etc.
- ADDITION OF CHEMICALS
- Bleaching Powder: 5% solution is used Dose: 3-6 drops/L contact time of ½ hour. Chlorine Tablets/Halazone Tablets. one tablet/litre.
- Iodine Solution: 02 drops of 2% Soln./litre
- KMnO4: an amount that gives just pink coloration to the Water.
- Alum: used for turbid water in a dose of 0.1-0.4 grains/5 litres of Water.

When sources of water are Rivers, Streams, Lakes etc. then water is Purified by Coagulation Sedimentation Filtration Disinfection

Storage

- When sources of water are wells, Springs, Tanks etc. Then water is purified by the addition of Bleaching powder/Chlorinated Lime as it is Cheep Easy to use
- Reliable and safe

- . Filtration: ceramic filters –Pasteur Chamberland filter, Berkefeld filter, Katadyn filter.
 - Main part is candle (porcelin /infusorial earth) In Katadyn: Surface covered with silver catalyst, bact. destroyed in contact with silver ion (oligodynamic action)
 - can remove bact. Not virues

- <u>Ultraviolet irradiation</u>: can destroy bact. Viruses, yeast, fungi, algae, protozoa
- Mercury vapor arc lamps emitting UV rays at a wave length of 254 nano mt
- Water should be free from turbidity/ colloidal suspended constituents
- Short exposure required, no foreign matter added, no taste /odour change
- No residual effect

. <u>Multistage Reverse osmosis purification of</u> <u>water</u>:

Remove total dissolved solid, hardness, heavy metals, bacteria, viruses, protozoa, cysts.

Clarity cartridge removes suspended particles (dust/mud/sand)

The reverse osmosis cartridge removes dissolved solid/hardness/heavy metals/ micro organism.

For biological impurities like bacteria or viruses in the **water**, then an ultra violet (UV) **filter** can be used. If only chemical properties are bad — like the presence of TDS — then an **RO** is **necessary**,"

ACCREDITATION PROCESS

Without a Laboratory Quality System -

too many mistakes can make analysis very costly; due to

costs of analysis

expenses caused by wrong decisions, or

- repeating analysis of samples
- investigation of problems
- revision of procedures
- loss of good reputation
Prevention is Better than cure!

'It costs less to prevent a problem than it does to correct it'

A formal quality system in the laboratory should prevent mistakes by means of:

- quality assurance measures
- quality control of the analytical results
- thorough documentation of the system
- efficient maintenance of records
- regular audits of all aspects of the system

House wife has solution of problems

Analyst has solution of chemicals

Thank you...

